|
|||
Home Astronomy Research 2025 Neutrinos From De-excitation Radiative Opacity 2024 Neutrino Emission from Stars 2023 White Dwarfs & 12C(α,γ)16O 2023 MESA VI 2022 Earendel, A Highly Magnified Star 2022 Black Hole Mass Spectrum 2021 Skye Equation of State 2021 White Dwarf Pulsations & 22Ne Software Instruments Stellar equation of states EOS with ionization EOS for supernovae Chemical potentials Stellar atmospheres Voigt Function Jeans escape Polytropic stars Cold white dwarfs Adiabatic white dwarfs Cold neutron stars Stellar opacities Neutrino energy loss rates Ephemeris routines Fermi-Dirac functions Polyhedra volume Plane - cube intersection Coating an ellipsoid Nuclear reaction networks Nuclear statistical equilibrium Laminar deflagrations CJ detonations ZND detonations Fitting to conic sections Unusual linear algebra Derivatives on uneven grids Pentadiagonal solver Quadratics, Cubics, Quartics Supernova light curves Exact Riemann solutions 1D PPM hydrodynamics Hydrodynamic test cases Galactic chemical evolution Universal two-body problem Circular and elliptical 3 body The pendulum Phyllotaxis MESA MESA-Web FLASH Zingale's software Brown's dStar GR1D code Iliadis' STARLIB database Herwig's NuGRID Meyer's NetNuc AAS Journals 2025 AAS YouTube 2025 AAS Peer Review Workshops 2025 ASU Energy in Everyday Life 2025 MESA Classroom Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
Referring to the diagram in the upper left, the pendulum obeys the conservation of angular momentum \begin{equation} \ddot{\theta} + g/l \ \sin(\theta) = 0 \hskip 0.5in \theta(t_0) = \theta_0 \hskip 0.5in \dot{\theta}(t_0) = \dot{\theta}_0 \ . \label{eq1} \tag{1} \end{equation} The analytical solution when the pendulum has enough energy to swing over is \begin{equation} \begin{split} A & = {\rm sgn}(\dot{\theta}) k \omega [t - t_0] + F(\sin^{-1}(k_0),\kappa) \\ \theta & = 2 \sin^{-1}({\rm sn}(A,\kappa)) \cdot {\rm sgn}({\rm cn}(A,\kappa)) \\ \dot{\theta} & = {\rm sgn}(\dot{\theta}) \ \sqrt{E_0} \ {\rm dn}(A,\kappa) \end{split} \label{eq2} \tag{2} \end{equation} where \begin{equation} \begin{split} {\rm sgn}(\zeta) & = 1 \ {\rm for} \ \zeta \ge 0 \ ; -1 \ {\rm for} \ \zeta \lt 0 \hskip 0.55in {\rm ! \ signum \ function } \\ \omega & = \sqrt{g / l} \hskip 2.3in {\rm ! \ angular \ frequency} \\ k_0 & = \sin(\theta_0 / 2) \hskip 1.95in {\rm ! \ sine \ half \ angle} \\ E_p & = 4 \omega^2 \hskip 2.45in {\rm ! \ maximum \ potential \ energy} \\ E_0 & = \dot{\theta}_0^2 + E_p \sin^2(\theta_0) \hskip 1.35in {\rm ! \ total \ energy } \\ k & = \sqrt{E_0 / E_p} \ge 1\\ \kappa & = 1/k \end{split} \label{eq3} \tag{3} \end{equation} $g$ is the gravitational acceleration, $F(\phi,m)$ is the Legendre form of the first incomplete elliptic integral, and ${\rm sn}(u,m)$, ${\rm cn}(u,m)$, and ${\rm dn}(u,m)$ are the Jacobi elliptic functions. The solution when the pendulum does not have enough energy to swing over (now $k \le 1$ and $\kappa \gt 1$) is found by swapping $k$ and $\kappa$ in the above expressions, and applying properties of the Jabobi elliptic functions: \begin{equation} \begin{split} A & = {\rm sgn}(\dot{\theta}) \omega [t - t_0] + F(\sin^{-1}(\kappa k_0),k) \\ \theta & = 2 \sin^{-1}(k \ {\rm sn}(A,\kappa)) \\ \dot{\theta} & = {\rm sgn}(\dot{\theta}) \ \sqrt{E_0} \ {\rm cn}(A,\kappa) \end{split} \label{eq4} \tag{4} \end{equation} The tool pendulum.tbz implements this complete analytical solution to the classic nonlinear pendulum. The solution is valid for any initial conditions and holds if the pendulum swings over or not.
|
||
|
Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate. |
---|