 Cococubed.com Supernova Light Curves

Home

Astronomy research
Software instruments
Stellar equation of states
EOS with ionization
EOS for supernovae
Chemical potentials
Stellar atmospheres

Voigt Function
Jeans escape
Polytropic stars
Cold white dwarfs

Cold neutron stars
Stellar opacities
Neutrino energy loss rates
Ephemeris routines
Fermi-Dirac functions

Polyhedra volume
Plane - cube intersection
Coating an ellipsoid

Nuclear reaction networks
Nuclear statistical equilibrium
Laminar deflagrations
CJ detonations
ZND detonations

Fitting to conic sections
Unusual linear algebra
Derivatives on uneven grids

Supernova light curves
Exact Riemann solutions
1D PPM hydrodynamics
Hydrodynamic test cases
Galactic chemical evolution

Universal two-body problem
Circular and elliptical 3 body
The pendulum
Phyllotaxis

MESA
MESA-Web
FLASH

Zingale's software
Brown's dStar
GR1D code
Herwig's NuGRID
Meyer's NetNuc
Presentations
Illustrations
Public Outreach
Education materials
2023 ASU Solar Systems Astronomy
2023 ASU Energy in Everyday Life

AAS Journals
2023 AAS Peer Review Workshops
2023 MESA VI
2023 MESA Marketplace
2023 MESA Classroom
2023 Neutrino Emission from Stars
2023 White Dwarfs & 12C(α,γ)16O
2022 Earendel, A Highly Magnified Star
2022 Black Hole Mass Spectrum
2022 MESA in Don't Look Up
2021 Bill Paxton, Tinsley Prize

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

The tool in lc1a.tbz generates simple supernova type 1a light curves. It is based on the expressions in Arnett 1982 and Dado & Dar 2015 where the bolometric luminosity is given by \begin{equation} L_b(t) = \frac{1}{t_r^2} \exp \left ( \frac{-t^2}{2 \ t_r^2} \right ) \int_0^t t \ \exp \left ( \frac{-t^2}{2 \ t_r^2} \right ) \ {\dot E}(t) \ {\rm d}t \ , \label{eq1} \tag{1} \end{equation} where $t_r$ is the rise time and ${\dot E}(t)$ is the energy deposition from radioactive decay of $^{56}{\rm Ni}$ and $^{56}{\rm Co}$ and positron heating. The tool's default set of parameters is aimed at SN 1992bc: