Voigt Function


Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres

   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Adiabatic white dwarfs

   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions

   Polyhedra volume
   Plane - cube intersection
   Coating an ellipsoid

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations

   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics

   Supernova light curves
   Exact Riemann solutions
   1D PPM hydrodynamics
   Hydrodynamic test cases
   Galactic chemical evolution

   Universal two-body problem
   Circular and elliptical 3 body
   The pendulum


   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2023 ASU Solar Systems Astronomy
2023 ASU Energy in Everyday Life

AAS Journals
2023 AAS YouTube
2023 AAS Peer Review Workshops
2023 MESA VI
2023 MESA Marketplace
2023 MESA Classroom
2023 Neutrino Emission from Stars
2023 White Dwarfs & 12C(α,γ)16O
2022 Earendel, A Highly Magnified Star
2022 Black Hole Mass Spectrum
2022 MESA in Don't Look Up
2021 Bill Paxton, Tinsley Prize

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

$ \def\drvop#1{{\frac{d}{d{#1}}}} \DeclareMathOperator\erfc{erfc} $ A spectral line profile which is Doppler broadened (a Gaussion profile) and collision broadened (a Lorentzian, Breit-Wigner, or Cauchy profile) is named after Woldemar Voigt. The tool voigt.tbz computes the Voigt function H(a,v) given by Zaghloul 2007 as \begin{equation} H(a,v) = \exp(a^2) \ \erfc(-v^2) \ \cos(2av) + \frac{2}{\sqrt{\pi}} \ \int_0^v \exp[-(v^2 - u^2)] \ \sin[2a(v - u)] \ {\rm d}u \label{eq1} \tag{1} \end{equation} where "a" is the ratio of the natural width to the Doppler width and "v", distance from line center in units of the Doppler width. A modest contribution has been adding the derivatives dH/da and dH/dv, and showing how the damped sinusoid may be accurately integrated.

The Voigt function is also the real part of w(z)=exp(-z2) erfc(iz) with z = a + i v, the Faddeeva function, the complex probability function, the plasma dispersion function. One may want to compare the answers and performance produced by voigt.tbz to those produced by TOMS 916.

H(a,v) profiles

H(a,v) for smaller a.

H(a,v) for larger a

Derivative dH/da

dH/da for smaller a

dH/da for larger a

Derivative dH/dv

dH/dv for smaller a

dH/dv for larger a


Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.