Voigt Function


Astronomy Research
   Radiative Opacity
   2024 Neutrino Emission from Stars
   2023 White Dwarfs & 12C(α,γ)16O
   2023 MESA VI
   2022 Earendel, A Highly Magnified Star
   2022 Black Hole Mass Spectrum
   2021 Skye Equation of State
   2021 White Dwarf Pulsations & 22Ne
   Software Instruments
     Stellar equation of states
     EOS with ionization
     EOS for supernovae
     Chemical potentials
     Stellar atmospheres

     Voigt Function
     Jeans escape
     Polytropic stars
     Cold white dwarfs
     Adiabatic white dwarfs

     Cold neutron stars
     Stellar opacities
     Neutrino energy loss rates
     Ephemeris routines
     Fermi-Dirac functions

     Polyhedra volume
     Plane - cube intersection
     Coating an ellipsoid

     Nuclear reaction networks
     Nuclear statistical equilibrium
     Laminar deflagrations
     CJ detonations
     ZND detonations

     Fitting to conic sections
     Unusual linear algebra
     Derivatives on uneven grids
     Pentadiagonal solver
     Quadratics, Cubics, Quartics

     Supernova light curves
     Exact Riemann solutions
     1D PPM hydrodynamics
     Hydrodynamic test cases
     Galactic chemical evolution

     Universal two-body problem
     Circular and elliptical 3 body
     The pendulum


     Zingale's software
     Brown's dStar
     GR1D code
     Iliadis' STARLIB database
     Herwig's NuGRID
     Meyer's NetNuc

AAS Journals
   2024 AAS YouTube
   2024 AAS Peer Review Workshops

2024 ASU Energy in Everyday Life
2024 MESA Classroom
Outreach and Education Materials

Other Stuff:
   Bicycle Adventures

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

$ \def\drvop#1{{\frac{d}{d{#1}}}} \DeclareMathOperator\erfc{erfc} $ A spectral line profile which is Doppler broadened (a Gaussion profile) and collision broadened (a Lorentzian, Breit-Wigner, or Cauchy profile) is named after Woldemar Voigt. The tool voigt.tbz computes the Voigt function H(a,v) given by Zaghloul 2007 as \begin{equation} H(a,v) = \exp(a^2) \ \erfc(-v^2) \ \cos(2av) + \frac{2}{\sqrt{\pi}} \ \int_0^v \exp[-(v^2 - u^2)] \ \sin[2a(v - u)] \ {\rm d}u \label{eq1} \tag{1} \end{equation} where "a" is the ratio of the natural width to the Doppler width and "v", distance from line center in units of the Doppler width. A modest contribution has been adding the derivatives dH/da and dH/dv, and showing how the damped sinusoid may be accurately integrated.

The Voigt function is also the real part of w(z)=exp(-z2) erfc(iz) with z = a + i v, the Faddeeva function, the complex probability function, the plasma dispersion function. One may want to compare the answers and performance produced by voigt.tbz to those produced by TOMS 916.

H(a,v) profiles

H(a,v) for smaller a.

H(a,v) for larger a

Derivative dH/da

dH/da for smaller a

dH/da for larger a

Derivative dH/dv

dH/dv for smaller a

dH/dv for larger a


Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.