Cold White Dwarfs


Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres

   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Adiabatic white dwarfs

   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions

   Polyhedra volume
   Plane - cube intersection
   Coating an ellipsoid

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations

   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics

   Supernova light curves
   Exact Riemann solutions
   1D PPM hydrodynamics
   Hydrodynamic test cases
   Galactic chemical evolution

   Universal two-body problem
   Circular and elliptical 3 body
   The pendulum


   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2022 ASU Solar Systems Astronomy
2022 ASU Energy in Everyday Life

AAS Journals
AAS Youtube
2022 Earendel, A Highly Magnified Star
2022 TV Columbae, Micronova
2022 White Dwarfs and 12C(α,γ)16O
2022 MESA in Don't Look Up
2022 MESA Marketplace
2022 MESA Summer School
2022 MESA Classroom
2021 Bill Paxton, Tinsley Prize

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

The tool in coldwd.tbz generates models of stars in hydrostatic equilibrium with a cold electron Fermi gas equation of state: \begin{equation} \begin{split} x & = \left [ \dfrac{3}{8 \pi} \left ( \dfrac{h}{m_ec}\right )^3 N_A Y_e \rho \right ]^{1/3} \\ f(x) & = x (x^2 + 1)^{1/2}(2x^2 - 3) + 3\ln(x + (x^2 + 1)^{1/2}) \\ g(x) & = 8x^3 \left [ (x^2 + 1)^{1/2} -1) \right ] - f(x) \\ P_e & = \dfrac{\pi m_e^4 c^5}{3 h^3} \cdot f(x) \hskip 1.0in E_e = \dfrac{\pi m_e^4 c^5}{3 h^3} \cdot g(x) \end{split} \label{eq1} \tag{1} \end{equation} The derivatives of the pressure and energy with respct to the density are also returned by the equation of state module. A general relativistic Tolman-Oppenheimer-Volkoff (TOV) correction to the equation for hydrostatic equilibrium is avaliable as an option. A quote from Icko about generating white dwarf models comes to mind ...

The equations above suffer a loss of numerical precision for x ≪ 1 due to the subtraction of two nearly equal terms. These expansions are used instead \begin{equation} \begin{split} f(x) & = \frac{8}{5} x^5 - \frac{4}{7} x^7 + \frac{1}{3} x^9 - \frac{5}{22} x^{11} + \frac{35}{208} x^{13} - \frac{21}{160} x^{15} + \frac{231}{2176} x^{17} + \mathcal{O}(x^{19}) \\ g(x) & = \frac{12}{5} x^5 - \frac{3}{7} x^7 + \frac{1}{6} x^9 - \frac{15}{176} x^{11} + \frac{21}{416} x^{13} - \frac{21}{640} x^{15} + \frac{99}{4352} x^{17} + \mathcal{O}(x^{19}) \ . \end{split} \label{eq2} \tag{2} \end{equation}
The first plot below shows the central density vs mass relationship between a cold electron Fermi gas equation of state and a polytropic equation of state.

A cold electron Fermi gas at low central densities (x ≪ 1) approaches the well-known nonrelativistic form $P = 1.004 \times 10^{13} \ (Y_e \rho)^{5/3} \ {\rm erg} \ {\rm cm}^{-3}$, as can be seen by the leading order $x^5$ series expansion term for f(x) above. In this limit the electrons are well approximated by a n = 3/2, γ = 1 + 1 /n = 5/3 polytropic equation of state.

A cold electron Fermi gas at high central densities (x ≫ 1) approaches the relativistic form $P = 1.2435 \times 10^{15} \ (Y_e \rho)^{4/3} \ {\rm erg} \ {\rm cm}^{-3}$; expansions in this limit are in the source code for reference but are not used as they are not needed. In this limit the electrons are well approximated by a n = 3 γ = 1 + 1 /n = 4/3 polytropic equation of state – the celebrated Chandrasekhar limit.




image It was a good day. Chicago. 2nd floor LASR. One in an impeccable brown suit and the other in blue overalls, white t-shirt, and Sear's DieHard steel-toe black shoes.

Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.