*
Cococubed.com


Slow Neutron Captures

Home

Astronomy Research
   2025 Neutrinos From De-excitation
   Radiative Opacity
   2024 Neutrino Emission from Stars
   2023 White Dwarfs & 12C(α,γ)16O
   2023 MESA VI
   2022 Earendel, A Highly Magnified Star
   2022 Black Hole Mass Spectrum
   2021 Skye Equation of State
   2021 White Dwarf Pulsations & 22Ne
   Software Instruments
     Stellar equation of states
     EOS with ionization
     EOS for supernovae
     Chemical potentials
     Stellar atmospheres

     Voigt Function
     Jeans escape
     Polytropic stars
     Cold white dwarfs
     Adiabatic white dwarfs

     Cold neutron stars
     Stellar opacities
     Neutrino energy loss rates
     Ephemeris routines
     Fermi-Dirac functions

     Polyhedra volume
     Plane - cube intersection
     Coating an ellipsoid

     Nuclear reaction networks
     Nuclear statistical equilibrium
     Laminar deflagrations
     CJ detonations
     ZND detonations

     Fitting to conic sections
     Unusual linear algebra
     Derivatives on uneven grids
     Pentadiagonal solver
     Quadratics, Cubics, Quartics

     Supernova light curves
     Exact Riemann solutions
     1D PPM hydrodynamics
     Hydrodynamic test cases
     Galactic chemical evolution

     Universal two-body problem
     Circular and elliptical 3 body
     The pendulum
     Phyllotaxis

     MESA
     MESA-Web
     FLASH

     Zingale's software
     Brown's dStar
     GR1D code
     Iliadis' STARLIB database
     Herwig's NuGRID
     Meyer's NetNuc

AAS Journals
   2025 AAS YouTube
   2025 AAS Peer Review Workshops

2025 ASU Energy in Everyday Life
2025 MESA Classroom

Other Stuff:
   Bicycle Adventures
   Illustrations
   Presentations



Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

The tool minis.tbz evolves an educational version of an s-process reaction network. One hundred isotopes are evolved until a chosen ending time. The initial abundance of the first isotope, notionally 56Fe, is taken equal to one. Guidance on what this tool does seems prudent. Let $R$ be the reaction rate for (n,g) reactions. In general $R$ is temperature, density, and composition dependent - but not here. The ordinary differential equations describing the change in the abundances $y$ of the $m$ isotopes are: \begin{equation} \frac{{\rm d}y_{1}}{{\rm d}t} = -y_{1} - R_{1} \hskip 0.5in \frac{{\rm d}y_{i}}{{\rm d}t} = y_{i-1} \ R_{i-1} - y_{i} \ R_{i} \ , \ i=1,2\ldots,m-1 \hskip 0.5in \frac{{\rm d}y_{m}}{{\rm d}t} = y_{m-1} \ R_{m-1} \label{eq1} \tag{1} \end{equation} For the implicit first-order accurate Euler method, each abundance is updated over a timestep h as $y_{i}^{{\rm new}} = y_{i} + \Delta y_{i}$. The change in the abundances over a time step $\Delta y_{i}$ is obtained from solving the system of linear equations $({\bf I}/h - \tilde{{\bf J}}) \cdot \Delta {\bf y} = \dot{\bf y}$, which is simply the familar $\tilde{{\bf A}} \cdot {\bf x} = {\bf b}$. With only (n,g) reactions, Jacobian matrix $\tilde{{\bf J}}$ has the simple form \begin{equation} \left[\begin{array}{rrrrrr} -R_{1} & & & & & \\ R_{1} & -R_{2} & & & & \\ & R_{2} & -R_{3} & & & \\ & & & \ldots & & \\ & & & & R_{m-1} & 0 \\ \end{array}\right] \label{eq2} \tag{2} \end{equation} This system of linear equations can be easily solved by hand: \begin{equation} \Delta y_1 = \frac{-y_1 R_1}{1/h + R_1} \hskip 0.5in \Delta y_i = \frac { y_{i-1} R_{i-1} - y_i R_i } {1/h + R_i} \ , \ i=1,2\ldots,m-1 \hskip 0.5in \Delta y_m = \frac{-y_{m-1} R_{m-1}}{1/h} \label{eq3} \tag{3} \end{equation} Thus the succint evolution loop implemented in minis.tbz. Here are some results:


image All exposures equal to one
image A middle exposure at 0.1
image A middle exposure at 10.0
 



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship of the publication if appropriate. At best, you'll love these programs so much that you'll send great wads of cash to me.