Slow Neutron Captures


Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres

   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Adiabatic white dwarfs

   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions

   Polyhedra volume
   Plane - cube intersection
   Coating an ellipsoid

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations

   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics

   Supernova light curves
   Exact Riemann solutions
   1D PPM hydrodynamics
   Hydrodynamic test cases
   Galactic chemical evolution

   Universal two-body problem
   Circular and elliptical 3 body
   The pendulum


   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2022 ASU Solar Systems Astronomy
2022 ASU Energy in Everyday Life

AAS Journals
AAS Youtube
2022 Earendel, A Highly Magnified Star
2022 TV Columbae, Micronova
2022 White Dwarfs and 12C(α,γ)16O
2022 MESA in Don't Look Up
2022 MESA Marketplace
2022 MESA Summer School
2022 MESA Classroom
2021 Bill Paxton, Tinsley Prize

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

The tool minis.tbz evolves an educational version of an s-process reaction network. One hundred isotopes are evolved until a chosen ending time. The initial abundance of the first isotope, notionally 56Fe, is taken equal to one. Guidance on what this tool does seems prudent. Let $R$ be the reaction rate for (n,g) reactions. In general $R$ is temperature, density, and composition dependent - but not here. The ordinary differential equations describing the change in the abundances $y$ of the $m$ isotopes are: \begin{equation} \frac{{\rm d}y_{1}}{{\rm d}t} = -y_{1} - R_{1} \hskip 0.5in \frac{{\rm d}y_{i}}{{\rm d}t} = y_{i-1} \ R_{i-1} - y_{i} \ R_{i} \ , \ i=1,2\ldots,m-1 \hskip 0.5in \frac{{\rm d}y_{m}}{{\rm d}t} = y_{m-1} \ R_{m-1} \label{eq1} \tag{1} \end{equation} For the implicit first-order accurate Euler method, each abundance is updated over a timestep h as $y_{i}^{{\rm new}} = y_{i} + \Delta y_{i}$. The change in the abundances over a time step $\Delta y_{i}$ is obtained from solving the system of linear equations $({\bf I}/h - \tilde{{\bf J}}) \cdot \Delta {\bf y} = \dot{\bf y}$, which is simply the familar $\tilde{{\bf A}} \cdot {\bf x} = {\bf b}$. With only (n,g) reactions, Jacobian matrix $\tilde{{\bf J}}$ has the simple form \begin{equation} \left[\begin{array}{rrrrrr} -R_{1} & & & & & \\ R_{1} & -R_{2} & & & & \\ & R_{2} & -R_{3} & & & \\ & & & \ldots & & \\ & & & & R_{m-1} & 0 \\ \end{array}\right] \label{eq2} \tag{2} \end{equation} This system of linear equations can be easily solved by hand: \begin{equation} \Delta y_1 = \frac{-y_1 R_1}{1/h + R_1} \hskip 0.5in \Delta y_i = \frac { y_{i-1} R_{i-1} - y_i R_i } {1/h + R_i} \ , \ i=1,2\ldots,m-1 \hskip 0.5in \Delta y_m = \frac{-y_{m-1} R_{m-1}}{1/h} \label{eq3} \tag{3} \end{equation} Thus the succint evolution loop implemented in minis.tbz. Here are some results:

image All exposures equal to one
image A middle exposure at 0.1
image A middle exposure at 10.0

Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship of the publication if appropriate. At best, you'll love these programs so much that you'll send great wads of cash to me.